The m-order Jacobi, Gauss–Seidel and symmetric Gauss–Seidel methods
نویسندگان
چکیده
<p>Aqui, são desenvolvidos métodos de ordem m que conservam a forma dos primeira<br />ordem. Métodos têm uma taxa convergência maior sua versão primeira ordem.<br />Esses subsequências seu método precursor, onde alguns benefícios do uso<br />de processadores vetoriais e paralelos podem ser explorados. Os resultados numéricos obtidos com as<br />implementações mostram vantagens computacionais quando comparadas as versões de<br />primeira ordem.</p>
منابع مشابه
Jacobi-Davidson Methods for Symmetric Eigenproblems
1 Why and how The Lanczos method is quite eeective if the desired eigenvalue is either max or min and if this eigenvalue is relatively well separated from the remaining spectrum, or when the method is applied with (A ? I) ?1 , for some reasonable guess for an eigenvalue. If none of these conditions is fulllled, for instance the computation of a vector (A ? I) ?1 y for given y may be computation...
متن کاملRestarting Techniques for the (jacobi-)davidson Symmetric Eigenvalue Methods
The (Jacobi-)Davidson method, which is a popular preconditioned extension to the Arnoldi method for solving large eigenvalue problems, is often used with restarting. This has significant performance shortcomings, since important components of the invariant subspace may be discarded. One way of saving more information at restart is through “thick” restarting, a technique that involves keeping mo...
متن کاملMultigrid Methods for Second Order Hamilton-Jacobi-Bellman and Hamilton-Jacobi-Bellman-Isaacs Equations
We propose multigrid methods for solving the discrete algebraic equations arising from the discretization of the second order Hamilton–Jacobi–Bellman (HJB) and Hamilton– Jacobi–Bellman–Isaacs (HJBI) equations. We propose a damped-relaxation method as a smoother for multigrid. In contrast with the standard policy iteration, the proposed damped-relaxation scheme is convergent for both HJB and HJB...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pesquisa e Ensino em Ciências Exatas e da Natureza
سال: 2022
ISSN: ['2526-8236']
DOI: https://doi.org/10.29215/pecen.v6i0.1773